Logic-Based Methods for Assurance of Complex System Performance (DRAFT)

NASA IV&V Workshop

11–13 September 2012 Morgantown, WV

Dr. Ralph L. Wojtowicz

Shepherd University Shepherdstown, WV rwojtowi@shepherd.edu

Baker Mountain Research Corporation Yellow Spring, WV ralphw@bakermountain.org

Outline

- Introduction
 - Autonomous Systems
 - Model Checking
 - Categorical Logic
- Model Checkin
 - Probabilistic Model Checking
 - Example: Knuth-Yao Simulation
 - History
- 3 IPv4 Protoco
 - Concept
 - DTMC Mode
 - Protocol Details
 - PTA Model
 - -N Theories
 - Syntax
 - Categorical Semantics
 - Models and Morphisms
 - Conclusions

Examples of Autonomous Platforms

Introduction

•0000

Introduction

Failures of Autonomous Systems

- Loss of the Mars Climate Orbiter in 1999.
- Deaths of six cancer patients subjected to overdoses by the Therac-25 computerized radiation therapy machine in 1985-1987
- Airshow crash of Airbus A320 in 1988 in Mulhouse. France
- Airshow crash of China Airlines Airbus A-300 in 1994
- Temporary loss of the Dallas-Fort Worth air traffic system in 1990
- British destroyer H.M.S. Sheffield was sunk by exocet missile as a result of errors in the ship's missile defense software
- Araine 5 exploded forty seconds after liftoff on 4 June 1996 due to software error
- Gemini V capsule in 1965 missed its landing point in the Atlantic by 100 miles due to software error

Formal Approaches to Software Verification

- Type theory
 - Type system gives a tractable syntactic method for proving the absence of certain program behaviors
 - Can be used to enforce highest level of system conformance to specification
 - Complete, formal system specifications are usually not available
 - Logical inference in rich type systems has high computational complexity
- Model checking
 - Finite-state model is exhaustively analyzed to test certain aspects of system behavior
 - State explosion problem resulting from aggregation of system components
- Research objective: develop syntactic inference systems that are applicable to model checking logics

11-13 September 2012

Logics

- Logics are mathematical models of inference. Like models of physical phenomena, logics are developed with varying levels of fidelity in response to their intended applications.
- Mathematical logic plays fundamental roles in aspects of machine learning (Mitchell), AI (Russell & Norvig) and programming language theory (Pierce)
- Fundamental insight: Logics are interpreted in categories (Lawvere: 1963)

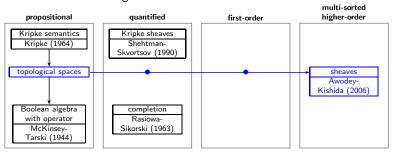
		logic	semantic category	example	Ĭ
		Horn	Cartesian	meet semi-lattice	Ì
		first-order intuitionistic	Heyting	open sets	Ĭ
		λ -calculus	Cartesian closed	group actions	İ
		first-order S4 modal	sheaf on topological space	infinite helix	Ĭ
		higher-order intuitionistic	topos	directed graphs —	_
		linear	*-autonomous	relations	
1					
	E	$ \begin{array}{c c} E_A & = \\ & \pi^* \longrightarrow \\ & \forall \end{array} $	$\mathbb{E}_{A \times B}$	false •	true
	↓ B	$A \longrightarrow \pi$	$A \times B$		

Modal logic

Introduction

00000

- Modalities: logical operations that qualify assertions about the truth of statements
- Necessity □ and possibility ◊
- Knowledge of autonomous agents
- Safety, security, and correctness of programs
- Semantics of S4 modal logic

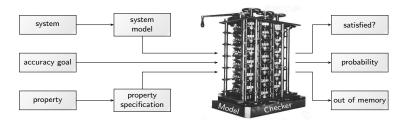


• Counterexamples to Barcan formulae: $\Box \exists \vdash \exists \Box$ and $\forall \Box \vdash \Box \forall$

Outline

- Introduction
 - Autonomous Systems
 - Model Checking
 - Categorical Logic
 - Model Checking
 - Probabilistic Model Checking
 - Example: Knuth-Yao Simulation
 - History
- 3 IPv4 Protoco
 - Concept
 - DTMC Mode
 - Protocol Details
 - PTA Model
 - τ N Theories
 - Syntax
 - Categorical Semantics
 - Models and Morphisms
 - Conclusions

Probabilistic Model Checking Concept

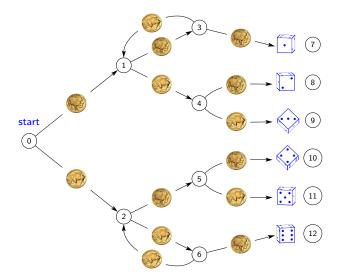


Model	Specification Language		
Discrete Time Markov Chain	Probabilistic Computation Tree Logic		
Markov Decision Process	Probabilistic Computation Tree Logic		
Continuous Time Markov Chain	Continuous Stochastic Logic		
Probabilistic Timed Automaton	Probabilistic Timed Computation Tree Logic		

Research effort has focused on

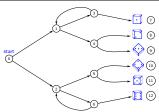
- Syntactic inference rules (sequent calculus)
- Applications: networking protocols, social network dynamics, etc.

Knuth-Yao 6-Sided Die Simulation



Properties of the Knuth-Yao Simulation

PCTL formula	type	satisfied by
start	state	s = 0
	state	s = 7
X[⊡]	path	(s_0,s_1,\dots) with $s_1=7$
\Diamond $\overline{f \odot}$	path	$s_n = 7$ for some n
<i>P</i> >0[◊ •]	state	states from which can occur: 0, 1, 3, 7
$start \wedge P_{=1/6} [\lozenge \ \widehat{looddot} \]$	state	0 iff $\[\]$ has probability $1/6$
$start \wedge P_{=1} [\lozenge \ \mathbf{\overline{\cdot}} \ \lor \cdots \lor \lozenge \ \mathbf{\overline{\parallel}} \]$	state	0 iff termination with probability 1

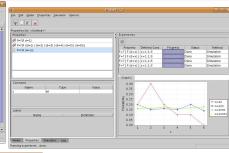


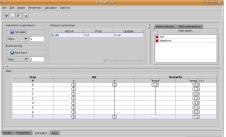
11-13 September 2012

PRISM: GPL Probabilistic Model Checker



Introduction





www.prismmodelchecker.org

11-13 September 2012

Model Checking Historical Sketch

- 1932 A. Church introduced untyped λ -calculus
- 1959 C. Lee introduced binary decision diagrams
- 1966 C. A. Petri wrote dissertation on Petri nets. D. Scott and P. Krauss wrote "Assigning Probabilities to Logical Formulas"
- 1968 Minsky introduced labeled transition systems
- 1969 D. Scott defined logic of computable functions of higher types
- 1974 D. E. Knuth received A.C.M. Turing Award 1976 D. Scott received Turing Award

- 1977 A. Pneuli proposed temporal logic model checking concept
- 1979 Computer Aided Verification colloquium started at Grenoble, FR
- 1980 R. Milner defined CSS (calculus of communicating systems)
- 1981 Clarke and Emerson and Sifakis independently published papers on temporal logic model checking
- 1982 CESAR Sifakis logic model checker developed at Grenoble
- 1984 P. Martin-Löf introduced intuitionistic type theory
- 1986 EMC CTL model checker developed at CMU
- 1986 R. Bryant popularized binary decision diagram in model checking
- 1987 Estelle model checker developed
- 1987 MEC Dicky calculus model checker developed at Bordeaux
- 1991 R. Milner received Turning Award
- 1992 Esterel real-time model checker developed
- 1993 Multi-terminal decision diagrams developed
- 1994 R. Alur and D. L. Dill defined timed automata
- 1994 J. Sifakis et al. introduced TCTL
- 1996 A. Pneuli received Turing Award
- 1996 E ⊢ MC² DTMC/PCTL and CTMC/CSL probabilistic model checker developed
- 1996 KRONOS timed automata model checker developed
- 1989 Edinburgh Concurrency Workbench developed
- 1997 Katis, Sabadini, and Walters introduced bicategories of processes
- 2000 A. C-C. Yao received Turing Award
- 2002 RAPTURE MDP/PCTL probabilistic model checker developed
- 2002 PRISM probabilistic model checker developed 2007 E. M. Clarke (CMU), E. A. Emerson (UTA), and J. Sifakis (CNRS, FR) received Turing Award
- www.bakermountain.org/talks/nasa2012.pdf

Outline

Introduction

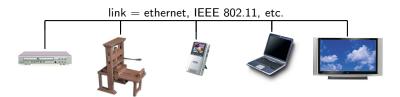
- Introduction
 - Autonomous Systems
 - Model Checking
 - Categorical Logic
 - Model Checkin
 - Probabilistic Model Checking
 - Example: Knuth-Yao Simulation
 - History
- 3 IPv4 Protocol
 - Concept
 - DTMC Model
 - Protocol Details
 - PTA Model
 - τ N Theories
 - Syntax
 - Categorical Semantics
 - Models and Morphisms
 - Conclusions

11-13 September 2012

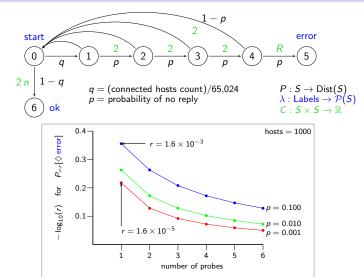
Introduction

ynamic Configuration of IPV4 Addresses

- Isolated network on a single link (e.g., no routers)
- No DHCP server or manual IP setup needed
- Upon connection, new host must:
 - Randomly select IP from a pool of 65,024
 169.254.1.0 169.254.254.255 (IANA assigned)
 - Probe for another host using that IP
 - Try again if IP is already in use
 - · Claim IP if it is not in use



DTMC Model of the IPv4 Link-Local Protocol



Dynamic Configuration of IPv4 Link-Local Addresses. www.ietf.org/rfc/rfc3927.txt. 2005.

Probabilistic Computation Tree Logic (PCTL)

Presentation:

Introduction

• S. Ω sorts

• sorts, products, PS (states), $P\Omega$ (paths) types

function symbols \bullet ϵ : $\Omega \rightarrow S$

• $\sigma:\Omega\to\Omega$

• $P_{\bowtie p}: \mathcal{P}\Omega \to \mathcal{P}S$ for each $p \in [0,1]$ and $\bowtie \in \{<, <, >, >\}$

• $E_{\bowtie c}: \mathcal{P}S \to \mathcal{P}S$ for each $c \in \mathbb{R}$

relation symbols $\bullet a \rightarrow S$

State formulae:

a
$$P_{\bowtie p}[\psi]$$
 $P_{\bowtie p}[X[\varphi]]$ $P_{\bowtie p}[U^{\leq k}[\varphi_1, \varphi_2]]$

$$P_{\bowtie p}[U[\varphi_1, \varphi_2]] \quad E_{\bowtie c}[\varphi]$$

$$\top \quad \bot \quad \varphi_1 \land \varphi_2 \quad \varphi_1 \lor \varphi_2 \quad \varphi_1 \Rightarrow \varphi_2$$

Path formulae:

$$X[\varphi] \quad U^{\leq k}[\varphi_1, \varphi_2] \quad U[\varphi_1, \varphi_2] \quad \Box[\varphi] \quad \diamondsuit[\varphi]$$

• S = set of states

- $\Omega = \text{set of paths } \omega = (s_0, s_1, \dots)$
- Path_s = set of paths ω with $s_0 = s$
- Probability measure p_s on Path_s
 - Cylinder $\Gamma(s_0, \ldots, s_n) = \text{all paths with given prefix}$
 - Disjoint unions of cylinders form an algebra on Path_s

- $p_s(\Gamma(s_0,\ldots,s_n)) = P(s_0,s_1)\cdot\cdots\cdot P(s_{n-1},s_n)$
- Extend p_s to a measure on the generated σ -algebra
- $s \models a$ iff s has label a
- $s \models P_{\bowtie p}[\psi]$ iff $p_s(\psi) \bowtie p$
- $s \models E_{\bowtie c}[\varphi]$ iff $\int_{\mathsf{Path}_c} \mathsf{cost}(\varphi)(\omega) \, dp_s \bowtie c$ where

$$\cos(\varphi)(\omega) = \begin{cases} & \sum_{i=1}^{\min\{j \mid s_j \in \varphi\}} C(s_{i-1}, s_i) & \text{if } \exists j \in \mathbb{N}. \ s_j \in \varphi \\ & \infty & \text{otherwise} \end{cases}$$

Protocol Details

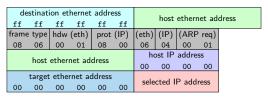
Introduction

```
PROBE WAIT
                                                                      1 sec PROBE NUM
PROBE_MIN 1 sec PROBE_MAX 2 sec ANNOUNCE_WAIT 2 sec ANNOUNCE_NUM 2 ANNOUNCE_INTERVAL 2 sec RATE_LIMIT_INTERVAL 60 sec DEFEND_INTERVAL 10 sec
```

Clocks and counters

$$x = local clock$$
 probes gratuitous coll def

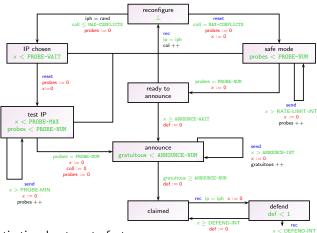
ARP Probe



• $P : \mathsf{Loc} \to \mathcal{P}(\mathsf{Zones}(\mathcal{X}) \times \Sigma \times \mathsf{Dist}(\mathcal{P}(X) \times \mathsf{Loc}))$

Probabilistic Timed Automaton Model

Introduction



- Probabilistic timed automata features
 - Clocks and counters
 - Timing and counter constraints on states and transitions
 - Clock and timer resets
 - Digital clocks and region graph model checking algorithms

Conclusions

ip = iph

Outline

- Introduction
 - Autonomous Systems
 - Model Checking
 - Categorical Logic
- Model Checkin
 - Probabilistic Model Checking
 - Example: Knuth-Yao Simulation
 - History
- IDv/ Protoco
 - Concept
 - DTMC Mode
 - Protocol Details
 - PTA Model
 - auN Theories
 - Syntax
 - Categorical Semantics
 - Models and Morphisms
 - Conclusions

τ N-Theories — Syntax

Signature

- Types: sorts, 1, $A \times B$, N, PA
- Function and relation symbols
- Terms
 - Variables x: A
 - Function application f(t):B if $f:A\to B$ and t:A
 - Products: *:1, $\langle s, t \rangle : A \times B$ for s:A and t:B and $fst(z): A \text{ and } snd(z): B \text{ for } z: A \times B$
 - Natural number: 0:N, succ(t):N if t:N and $iter_x(m,a,n):A$ if m:A, a:A and n:N with x not free in a or n (or in iter_x(m,a,n))
 - Power: $\{x: A \mid \varphi\}: PA$ (with $FV(\varphi)/\{x\}$ as set of free variables)
- Formulae
 - Atomic: R(t), (t = A s) and $(s \in A t)$ for s : A and t : PA
 - Compound: $\varphi * \psi$ with * one of \land , \lor , \Rightarrow
 - Negated: $\neg \varphi$
 - Quantified: $(\forall x)\varphi$ and $(\exists x)\varphi$

Introduction

auN-Theories — Sequent Calculus

Structural Rules ¹			Implication					
$(\varphi \vdash_{\vec{x}} \varphi) \qquad \frac{(\varphi \vdash_{\vec{x}} \psi)}{(\varphi[\vec{s}/\vec{x}] \vdash_{\vec{y}} \psi[\vec{s}}$		$\frac{(\varphi \vdash_{\vec{x}} \psi) (\psi \vdash_{\vec{x}} \chi)}{(\varphi \vdash_{\vec{x}} \chi)}$	$\frac{((\varphi \wedge \psi) \vdash_{\vec{x}} \chi)}{(\varphi \vdash_{\vec{x}} (\psi \Rightarrow \chi))}$					
Equality		Quantification ²						
$(\top \vdash_{x} (x = x))$		$(\varphi \vdash_{\vec{x},y} \psi)$	$(\varphi \vdash_{\vec{x},y} \psi)$					
$((\vec{x} = \vec{y}) \land \varphi \vdash_{\vec{z}}$	$\varphi[\vec{y}/\vec{x}]$	$\overline{((\exists y)\varphi \vdash_{\vec{x}} \psi)}$	$\overline{(\varphi \vdash_{\vec{x}} (\forall y)\psi)}$					
Conjunction ((a \(\sigma \) ((a \(\sigma \))								
$(\varphi \vdash_{\vec{x}} \top) \qquad ((\varphi \land \psi) \vdash_{\vec{x}} \varphi$	o) ((4	$\frac{(\varphi \vdash_{\vec{x}} \psi) (\varphi \vdash_{\vec{x}} \chi)}{(\varphi \vdash_{\vec{x}} (\psi \land \chi))}$						
Disjunction (10 heav) (a) heav)								
$(\bot \vdash_{\vec{x}} \varphi) \qquad (\varphi \vdash_{\vec{x}} (\varphi \lor \psi)$)) (ψ	$\vdash_{\vec{x}} (\varphi \lor \psi))$	$\frac{(\varphi \vdash_{\vec{x}} \chi) \ (\psi \vdash_{\vec{x}} \chi)}{((\varphi \lor \psi) \vdash_{\vec{x}} \chi)}$					
Product								
$ (\top \vdash_x (x =_1 *)) (\top \vdash_{x,y} (fst(\langle x,y \rangle) = x)) (\top \vdash_z (\langle fst(z), snd(z) \rangle = z)) $								
$(\top \vdash_{x,y} (\operatorname{snd}(\langle x,y\rangle) = y))$								
Power ³								
$\left(\top \vdash_{w} (w =_{PA} \{x : A \mid x \in_{A} w\}) \right) \qquad \left((z \in_{A} \{y : A \mid \varphi\}) \dashv \vdash_{\vec{x},z} \varphi[z/y] \right)$								
Natural Numbers								
$\left(\top \vdash_{\vec{y}} (iter_{x}(m, a, 0) = a)\right) \left(\top \vdash_{\vec{y}} (iter_{x}(m, a, succ(n)) = m[iter_{x}(m, a, n)/x])\right)$								
$(((0 \in_N z) \land (\forall v))((v \in_N z) \Rightarrow (\operatorname{succ}(v) \in_N z))) \vdash_{z \in PN} (\forall v)(v \in_N z))$								

Contexts are suitable for the formulae that occur on both sides of \vdash . contains all the variables of \vec{x} In the substitution rule, \vec{y}

τ N-Theories — Models and Morphisms

Introduction

- Any topos with natural number object is a suitable semantic category.
 - Soundness: If σ is provable in \mathbb{T} , then it is satisfied in all \mathbb{T} -models in such toposes. D4.3.17
 - Completeness: If σ is satisfied in all \mathbb{T} -models in such toposes, then it is provable. D4.3.19(b)
 - Peano Arithmetic: Any such topos has a model of PA. A2.5.4, A2.5.5
 - Recursive Partial Functions: $\mathbb{N}^k \to \mathbb{N}$ have interpretations.
- Logical Functors: cartesian and preserves exponentials, Ω and N
 - Preserve satisfaction of τN sequents
- Geometric morphisms: adjoint pairs $f^* \not| f_*$ with f^* cartesian
 - Preserve satisfaction of Horn sequents of \mathcal{F} (\top, \wedge)
 - Preserve satisfaction of regular sequents of \mathcal{E} (\top , \wedge , \exists)
 - ullet Reflect natural number objects of ${\mathcal E}$

Citations in green are from Johnstone's Sketches of an Elephant. 2002.

Outline

- - Autonomous Systems
 - Model Checking
 - Categorical Logic
 - - Probabilistic Model Checking
 - Example: Knuth-Yao Simulation
 - History
 - - Concept

 - Protocol Details
 - PTA Model

 - - Syntax Categorical Semantics
 - Models and Morphisms
 - Conclusions

ttion Model Checking IPv4 Protocol auN Theories **Conclusions** 00000 0000

Conclusions

Forthcoming

- S. Awodev and K. Kishida. "Topology and Modality: The Topological Interpretation of First-Order Modal Logic". 2007. www.andrew.cmu.edu/user/awodey
- S. Eilenberg and C. C. Elgot. Recursiveness. Academic Press. 1970.
- B. Jacobs. Categorical Logic and Type Theory. Elsevier. 1999.
- P. E. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press. 2002.
- T. M. Mitchell. Machine Learning. 1997.
- B. C. Pierce. Types and Programming Languages. 2002.
- B. C. Pierce. Advanced Types in Programming Languages. 2004.
- PRISM web site: www.prismmodelchecker.org
- S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 1995.
- J. J. M. M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. American Mathematical Society, 2004.

11-13 September 2012